Advertisements
Advertisements
प्रश्न
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
उत्तर
Given that: f(x) = tan–1(sinx + cosx) in `(0, pi/4)`
Differentiating both sides w.r.t. x, we get
f'(x) = `1/(1 + (sin x + cos x)^2) * "d"/"dx" (sinx + cos x)`
⇒ f'(x) = `(1 xx (cos x - sinx))/(1 + (sinx + cosx)^2`
⇒ f'(x) = `(cosx - sinx)/(1 + sin^2x + cos^2x + 2 sin x cos x)`
⇒ f'(x) = `(cosx - sinx)/(1 + 1 + 2 sinx cosx)`
⇒ f'(x) = `(cosx - sinx)/(2 + 2 sinx cosx)`
For an increasing function f '(x) ≥ 0
∴ `(cosx - sinx)/(2 + 2 sinx cosx) ≥ 0`
⇒ cos x – sin x ≥ 0 ....`[because (2 + sin2x) ≥ "in" (0, pi/4)]`
⇒ cos x ≥ sin x, which is true for `(0, pi/4)`
Hence, the given function f(x) is an increasing function in `(0, pi/4)`.
APPEARS IN
संबंधित प्रश्न
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Every invertible function is
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.