मराठी

If G (X) is a Decreasing Function On R And F(X) = Tan−1 [G (X)]. State Whether F(X) is Increasing Or Decreasing On R ? - Mathematics

Advertisements
Advertisements

प्रश्न

If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?

बेरीज

उत्तर

\[\text { Given }:g\left( x \right)\text {  is decreasing on R }.\]

\[ \Rightarrow x_1 < x_2 \]

\[ \Rightarrow g\left( x_1 \right) > g\left( x_2 \right)\]

\[ \text {Applying tan}^{- 1} \text { on both sides, we get }\]

\[ \Rightarrow \tan^{- 1} \left\{ g\left( x_1 \right) \right\} > \tan^{- 1} \left\{ g\left( x_2 \right) \right\}\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\text { Thus },\]

\[ x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\text { So,}f\left( x \right)\text {  is decreasing on R }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 10 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Prove that the logarithmic function is strictly increasing on (0, ∞).


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The function f(x) = 9 - x5 - x7 is decreasing for


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×