Advertisements
Advertisements
प्रश्न
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
उत्तर
\[\text { Given }:g\left( x \right)\text { is decreasing on R }.\]
\[ \Rightarrow x_1 < x_2 \]
\[ \Rightarrow g\left( x_1 \right) > g\left( x_2 \right)\]
\[ \text {Applying tan}^{- 1} \text { on both sides, we get }\]
\[ \Rightarrow \tan^{- 1} \left\{ g\left( x_1 \right) \right\} > \tan^{- 1} \left\{ g\left( x_2 \right) \right\}\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\text { Thus },\]
\[ x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\text { So,}f\left( x \right)\text { is decreasing on R }.\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Prove that the logarithmic function is strictly increasing on (0, ∞).
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The function f(x) = 9 - x5 - x7 is decreasing for
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.