Advertisements
Advertisements
प्रश्न
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
उत्तर
\[\text { Given }:g\left( x \right)\text { is decreasing on R }.\]
\[ \Rightarrow x_1 < x_2 \]
\[ \Rightarrow g\left( x_1 \right) > g\left( x_2 \right)\]
\[ \text {Applying tan}^{- 1} \text { on both sides, we get }\]
\[ \Rightarrow \tan^{- 1} \left\{ g\left( x_1 \right) \right\} > \tan^{- 1} \left\{ g\left( x_2 \right) \right\}\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\text { Thus },\]
\[ x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\text { So,}f\left( x \right)\text { is decreasing on R }.\]
APPEARS IN
संबंधित प्रश्न
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = ax is increasing on R, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Show that f(x) = x – cos x is increasing for all x.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
The function f(x) = 9 - x5 - x7 is decreasing for
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?