Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
उत्तर
\[\text { When }\left( x - a \right)\left( x - b \right)>0 \text { with} a < b, x < a \ or \ x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 6 - 9x - x^2 \]
\[f'\left( x \right) = - 2x - 9\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow - 2x - 9 > 0\]
\[ \Rightarrow - 2x > 9\]
\[ \Rightarrow x < \frac{- 9}{2}\]
\[ \Rightarrow x \in \left( - \infty , \frac{- 9}{2} \right)\]
\[\text { So,}f(x)\text { is increasing on } \left( - \infty , \frac{- 9}{2} \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - 2x - 9 < 0\]
\[ \Rightarrow - 2x < 9\]
\[ \Rightarrow x > \frac{- 9}{2}\]
\[ \Rightarrow x \in \left( \frac{- 9}{2}, \infty \right)\]
\[\text { So,}f(x)\text { is decreasing on }\left( \frac{- 9}{2}, \infty \right).\]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Function f(x) = x3 − 27x + 5 is monotonically increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Show that f(x) = x – cos x is increasing for all x.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The slope of tangent at any point (a, b) is also called as ______.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
The function f (x) = 2 – 3 x is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Which of the following graph represent the strictly increasing function.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).