Advertisements
Advertisements
प्रश्न
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
उत्तर
\[f\left( x \right) = x - \left[ x \right]\]
\[\text { Let } x_1 , x_2 \in \left( 0, 1 \right) \text { such that } x_1 < x_2 . \text { Then }, \]
\[\left[ x_1 \right]=\left[ x_2 \right]= 0 ...(1)\]
\[\text { Now,}\]
\[ x_1 < x_2 \]
\[ \Rightarrow x_1 - \left[ x_1 \right] < x_2 - \left[ x_2 \right] \left[ \text { From eq }. (1) \right]\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, 1 \right)\]
\[\text { So},f\left( x \right) \text { is increasing on }\left( 0, 1 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = cos x − 2 λ x is monotonic decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Which of the following functions is decreasing on `(0, pi/2)`?
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The function f(x) = x3 + 3x is increasing in interval ______.