हिंदी

Show that F(X) = 1 1 + X 2 is Neither Increasing Nor Decreasing on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?

योग

उत्तर

\[f\left( x \right) = \frac{1}{1 + x^2}\]

\[\text { R can be divided into two intervals }\left( 0, \infty \right)\text { and }( - \infty , 0] . \]

\[\text { Case }1: \text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow {x_1}^2 < {x_2}^2 \]

\[ \Rightarrow 1 + {x_1}^2 < 1 + {x_2}^2 \]

\[ \Rightarrow \frac{1}{1 + {x_1}^2} > \frac{1}{1 + {x_2}^2}\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right) \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So, }f\left( x \right) \text { is decreasing on }\left( 0, \infty \right).\]

\[\text { Case } 2: \text { Let } x_1 , x_2 \in ( - \infty , 0] \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow {x_1}^2 > {x_2}^2 \]

\[ \Rightarrow 1 + {x_1}^2 > 1 + {x_2}^2 \]

\[ \Rightarrow \frac{1}{1 + {x_1}^2} < \frac{1}{1 + {x_2}^2}\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right) \forall x_1 , x_2 \in ( - \infty , 0]\]

\[\text { So },f\left( x \right)\text { is increasing on }( - \infty , 0].\]

\[\text { Here }, f\left( x \right)\text { is decreasing on}\left( 0, \infty \right)\text { and increasing on }( - \infty , 0].\]

\[\text { Thus },f\left( x \right) \text { is neither increasing nor decreasing on R } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 7 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


The function f(x) = xx decreases on the interval


Function f(x) = cos x − 2 λ x is monotonic decreasing when


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


For every value of x, the function f(x) = `1/7^x` is ______ 


The function f (x) = 2 – 3 x is ____________.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×