मराठी

Show that F(X) = 1 1 + X 2 is Neither Increasing Nor Decreasing on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?

बेरीज

उत्तर

\[f\left( x \right) = \frac{1}{1 + x^2}\]

\[\text { R can be divided into two intervals }\left( 0, \infty \right)\text { and }( - \infty , 0] . \]

\[\text { Case }1: \text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow {x_1}^2 < {x_2}^2 \]

\[ \Rightarrow 1 + {x_1}^2 < 1 + {x_2}^2 \]

\[ \Rightarrow \frac{1}{1 + {x_1}^2} > \frac{1}{1 + {x_2}^2}\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right) \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So, }f\left( x \right) \text { is decreasing on }\left( 0, \infty \right).\]

\[\text { Case } 2: \text { Let } x_1 , x_2 \in ( - \infty , 0] \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow {x_1}^2 > {x_2}^2 \]

\[ \Rightarrow 1 + {x_1}^2 > 1 + {x_2}^2 \]

\[ \Rightarrow \frac{1}{1 + {x_1}^2} < \frac{1}{1 + {x_2}^2}\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right) \forall x_1 , x_2 \in ( - \infty , 0]\]

\[\text { So },f\left( x \right)\text { is increasing on }( - \infty , 0].\]

\[\text { Here }, f\left( x \right)\text { is decreasing on}\left( 0, \infty \right)\text { and increasing on }( - \infty , 0].\]

\[\text { Thus },f\left( x \right) \text { is neither increasing nor decreasing on R } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 7 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Function f(x) = loga x is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The function f(x) = sin x + 2x is ______ 


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


y = log x satisfies for x > 1, the inequality ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×