Advertisements
Advertisements
प्रश्न
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
उत्तर १
`x=cos^2θ and y=cot θ`
`(dx)/(dθ)=d/(dθ) (cos^2θ)`
`dx/(dθ)=-2cosθ sin θ`
`dy/dθ=-cosec^2θ`
`dy/dx=dy/(dθ)/dx/(dθ)`
= `(-cosec^2θ)/(-2cosθ sinθ)`
=`1/(2sin^3 θ cos θ)`
=`(1/2sin^3θ cos θ)θ=pi/4`
`(dy/dx)_θ=pi/4`
=`1/2(1/sqrt2)^3 1/sqrt2`
=`1/(2 1/4)=2`
उत्तर २
`x=cos^2θ and y=cot θ`
`(dx)/(dθ)=2 cosθ (-sinθ )`
`dx/(dθ)=-2cosθ sin θ`
y = cotθ
`dy/dθ=-cosec^2θ`
`dy/dx=(dy/(dθ))/(dx/(dθ))`
= `(-cosec^2θ)/(-2cosθ sinθ)`
`((dy)/(dx))_(0=π/4) = (cosec^2 π/4)/(2.sin π/4. cos π/4) `
= `2/(2 xx 1/sqrt2 xx 1/sqrt2`
= 2
उत्तर ३
`x=cos^2θ and y=cot θ`
`(dx)/(dθ)=2 cosθ (-sinθ )`
`dx/(dθ)=-2cosθ sin θ`
y = cotθ
`dy/dθ=-cosec^2θ`
`dy/dx=(dy/(dθ))/(dx/(dθ))`
= `(-cosec^2θ)/(-2cosθ sinθ)`
`((dy)/(dx))_(0=π/4) = (cosec^2 π/4)/(2.sin π/4. cos π/4) `
= `2/(2 xx 1/sqrt2 xx 1/sqrt2`
= 2
APPEARS IN
संबंधित प्रश्न
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Prove that the logarithmic function is strictly increasing on (0, ∞).
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Find `dy/dx,if e^x+e^y=e^(x-y)`
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that f(x) = x – cos x is increasing for all x.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
For every value of x, the function f(x) = `1/7^x` is ______
The function `1/(1 + x^2)` is increasing in the interval ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f (x) = 2 – 3 x is ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
If f(x) = x + cosx – a then ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.