Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 2 x^3 - 24x + 7\]
\[f'\left( x \right) = 6 x^2 - 24\]
\[ = 6 \left( x^2 - 4 \right)\]
\[ = 6 \left( x + 2 \right)\left( x - 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x + 2 \right)\left( x - 2 \right) > 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x - 2 \right) > 0 \left[ \text { Since } 6 > 0, 6 \left( x + 2 \right)\left( x - 2 \right) > 0 \Rightarrow \left( x + 2 \right)\left( x - 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 2\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , - 2 \right) \cup \left( 2, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x + 2 \right)\left( x - 2 \right) < 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x - 2 \right) < 0 \left[ \text { Since }6 > 0, 6 \left( x + 2 \right)\left( x - 2 \right) < 0 \Rightarrow \left( x + 2 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 2\]
\[ \Rightarrow x \in \left( - 2, 2 \right)\]
\[\text { So },f(x)\text { is decreasing on }x \in \left( - 2, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Show that f(x) = x – cos x is increasing for all x.
The slope of tangent at any point (a, b) is also called as ______.
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Which of the following graph represent the strictly increasing function.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The function f(x) = x3 + 3x is increasing in interval ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.