Advertisements
Advertisements
प्रश्न
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
पर्याय
(1, 2)
(2, 3)
(1, 3)
(2, 4)
उत्तर
(2, 3)
\[\text { Given: } \hspace{0.167em} f\left( x \right) = 2 \log \left( x - 2 \right) - x^2 + 4x + 1\]
\[\text { Domain of f }\left( x \right) is\left( 2, \infty \right).\]
\[f'\left( x \right) = \frac{2}{x - 2} - 2x + 4\]
\[ = \frac{2 - 2 x^2 + 4x + 4x - 8}{x - 2}\]
\[ = \frac{- 2 x^2 + 8x - 6}{x - 2}\]
\[ = \frac{- 2 \left( x^2 - 4x + 3 \right)}{x - 2}\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{- 2 \left( x^2 - 4x + 3 \right)}{x - 2} > 0\]
\[ \Rightarrow x^2 - 4x + 3 + < 0 \left[ \because \left( x - 2 \right) > 0 \text { & }- 2 < 0 \right]\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow 1 < x < 3\]
\[ \Rightarrow x \in \left( 1, 3 \right)\]
\[\text { Also, the domain of f }\left( x \right)is\left( 2, \infty \right).\]
\[ \Rightarrow x \in \left( 1, 3 \right) \cap \left( 2, \infty \right)\]
\[ \Rightarrow x \in \left( 2, 3 \right)\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
The slope of tangent at any point (a, b) is also called as ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The function f(x) = sin x + 2x is ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
2x3 - 6x + 5 is an increasing function, if ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
A function f is said to be increasing at a point c if ______.