English

The Function F(X) = 2 Log (X − 2) − X2 + 4x + 1 Increases on the Interval - Mathematics

Advertisements
Advertisements

Question

The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval

Options

  • (1, 2)

  • (2, 3)

  • (1, 3)

  • (2, 4)

MCQ

Solution

 (2, 3)

\[\text { Given: } \hspace{0.167em} f\left( x \right) = 2 \log \left( x - 2 \right) - x^2 + 4x + 1\]

\[\text { Domain of f }\left( x \right) is\left( 2, \infty \right).\]

\[f'\left( x \right) = \frac{2}{x - 2} - 2x + 4\]

\[ = \frac{2 - 2 x^2 + 4x + 4x - 8}{x - 2}\]

\[ = \frac{- 2 x^2 + 8x - 6}{x - 2}\]

\[ = \frac{- 2 \left( x^2 - 4x + 3 \right)}{x - 2}\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{- 2 \left( x^2 - 4x + 3 \right)}{x - 2} > 0\]

\[ \Rightarrow x^2 - 4x + 3 + < 0 \left[ \because \left( x - 2 \right) > 0 \text { & }- 2 < 0 \right]\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow 1 < x < 3\]

\[ \Rightarrow x \in \left( 1, 3 \right)\]

\[\text { Also, the domain of f }\left( x \right)is\left( 2, \infty \right).\]

\[ \Rightarrow x \in \left( 1, 3 \right) \cap \left( 2, \infty \right)\]

\[ \Rightarrow x \in \left( 2, 3 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.4 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 4 | Page 40

RELATED QUESTIONS

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Function f(x) = ax is increasing on R, if


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


The slope of tangent at any point (a, b) is also called as ______.


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


Function given by f(x) = sin x is strictly increasing in.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×