Advertisements
Advertisements
Question
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Solution
\[f\left( x \right) = \log \left( 1 + x \right) - \frac{x}{1 + x}\]
\[\text { Domain of f }\left( x \right) \text { is }\left( - 1, \infty \right).\]
\[f'\left( x \right) = \frac{1}{1 + x} - \left\{ \frac{1 + x - x}{\left( 1 + x \right)^2} \right\}\]
\[ = \frac{1}{1 + x} - \frac{1}{\left( 1 + x \right)^2}\]
\[ = \frac{x}{\left( 1 + x \right)^2}\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{x}{\left( 1 + x \right)^2} > 0\]
\[ \Rightarrow x > 0 \left[ \because \left( 1 + x \right)^2 >0, \text { Domain }:\left( - 1, \infty \right) \right]\]
\[ \Rightarrow x \in \left( 0, \infty \right)\]
\[\text { So, f(x) is increasing on } \left( 0, \infty \right) . \]
\[\text { Forf(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{x}{\left( 1 + x \right)^2} < 0\]
\[ \Rightarrow x < 0 \left[ \because \left( 1 + x \right)^2 >0, \text{Domain }:\left( - 1, \infty \right) \right]\]
\[ \Rightarrow x \in \left( - 1, 0 \right)\]
\[\text { So,f(x)is decreasing on }\left( - 1, 0 \right).\]
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = x9 + 3x7 + 64 is increasing on
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
The function f(x) = 9 - x5 - x7 is decreasing for
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The function f(x) = x3 - 3x is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.