English

price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing - Mathematics and Statistics

Advertisements
Advertisements

Question

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing

Sum

Solution

Price function P is given by

`"P" = 183 + 120"D" - 3"D"^2`

Differentiating w.r.t. D

`"dP"/"dD"=120-6D`

If price is increasing then we have `"dP"/"dD">0`

∴ 120 - 6D > 0

∴ 6D < 120

∴ D < 20

∴ The price is increasing for D < 20.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Applications of Derivatives - Exercise 4.4 [Page 112]

APPEARS IN

RELATED QUESTIONS

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The slope of tangent at any point (a, b) is also called as ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


The function f(x) = tanx – x ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×