Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 8 + 36x + 3 x^2 - 2 x^3 \]
\[f'\left( x \right) = 36 + 6x - 6 x^2 \]
\[ = - 6 \left( x^2 - x - 6 \right)\]
\[ = - 6 \left( x - 3 \right)\left( x + 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow - 6 \left( x - 3 \right)\left( x + 2 \right) > 0 \]
\[ \Rightarrow \left( x - 3 \right)\left( x + 2 \right) < 0 \left[ \text { Since } - 6 < 0, - 6 \left( x - 3 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 3 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 3\]
\[ \Rightarrow x \in \left( - 2, 3 \right)\]
\[\text { So,}f(x)\text { is increasing on} \left( - 2, 3 \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - 6 \left( x - 3 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 3 \right)\left( x + 2 \right) > 0 \left[ \text { Since } - 6 < 0, - 6 \left( x - 3 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 3 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 3 \]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is decreasing on } \left( - \infty , - 2 \right) \cup \left( 3, \infty \right) .\]
APPEARS IN
RELATED QUESTIONS
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the logarithmic function is strictly increasing on (0, ∞).
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
The function f(x) = x9 + 3x7 + 64 is increasing on
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Show that f(x) = x – cos x is increasing for all x.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The function f(x) = tanx – x ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.