Advertisements
Advertisements
Question
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Options
a ∈ (1/2, ∞)
a ∈ (−1/2, 1/2)
a = 1/2
a ∈ R
Solution
\[f(x) = 2 \tan x + \left( 2a + 1 \right) \log_e \left| \sec x \right| + \left( a - 2 \right) x\]
\[\text { When }\sec x > 0 \Rightarrow \left| \sec x \right| = \sec x\]
\[\frac{d}{dx}\left\{ f\left( x \right) \right\} = 2 \sec^2 x + \left( 2a + 1 \right)\frac{1}{\sec x} \times \sec x \tan x + \left( a - 2 \right) \]
\[ = 2 \sec^2 x + \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \]
\[\text { For f(x) to be increasing}, \]
\[2se c^2 x + \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \geqslant 0\]
\[ \Rightarrow 2 + 2 \tan^2 x + \left( 2a + 1 \right)\tan x + a - 2 \geqslant 0\]
\[ \Rightarrow 2 \tan^2 x + \left( 2a + 1 \right)\tan x + a \geqslant 0\]
\[\text { Its discriminant } \leqslant 0 \left[ \because a x^2 + bx + c \geqslant 0 \Rightarrow b^2 - 4ac \leqslant 0 \right]\]
\[ \Rightarrow \left( 2a + 1 \right)^2 - 4 . 2 . a \leqslant 0\]
\[ \Rightarrow 4 a^2 - 4a + 1 \leqslant 0\]
\[ \Rightarrow \left( 2a - 1 \right)^2 \leqslant 0\]
\[ \left( 2a - 1 \right)^2 < 0 \text { cannot be possible } . \]
\[ \therefore \left( 2a - 1 \right)^2 = 0\]
\[ \Rightarrow a = \frac{1}{2}\]
\[\text { When } \sec x < 0 \Rightarrow \left| \sec x \right| = - \sec x\]
\[\frac{d}{dx}\left\{ f\left( x \right) \right\} = 2 \sec^2 x + \left( 2a + 1 \right)\frac{1}{- \sec x} \times \sec x \tan x + \left( a - 2 \right)\]
\[ = 2 \sec^2 x - \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \]
\[\text { For f(x) to be increasing,} \]
\[2se c^2 x - \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \geqslant 0\]
\[ \Rightarrow 2 + 2 \tan^2 x - \left( 2a + 1 \right)\tan x + a - 2 \geqslant 0\]
\[ \Rightarrow 2 \tan^2 x - \left( 2a + 1 \right)\tan x + a \geqslant 0 \]
\[\text { Its discriminant } \leqslant 0 \left[ \because a x^2 + bx + c \geqslant 0 \Rightarrow b^2 - 4ac \leqslant 0 \right]\]
\[ \Rightarrow \left\{ - \left( 2a + 1 \right) \right\}^2 - 4 . 2 . a \leqslant 0\]
\[ \Rightarrow 4 a^2 - 4a + 1 \leqslant 0\]
\[ \Rightarrow \left( 2a - 1 \right)^2 \leqslant 0\]
\[ \left( 2a - 1 \right)^2 < 0 \text { cannot be possible } . \]
\[ \therefore \left( 2a - 1 \right)^2 = 0\]
\[ \Rightarrow a = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Function f(x) = loga x is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Show that f(x) = x – cos x is increasing for all x.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
The function f(x) = 9 - x5 - x7 is decreasing for
The function f(x) = sin x + 2x is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.