English

If the Function F(X) = 2 Tan X + (2a + 1) Loge | Sec X | + (A − 2) X Is Increasing on R, Then - Mathematics

Advertisements
Advertisements

Question

If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then

Options

  • a ∈ (1/2, ∞)

  • a ∈ (−1/2, 1/2)

  • a = 1/2

  • a ∈ R

MCQ

Solution

\[f(x) = 2 \tan x + \left( 2a + 1 \right) \log_e \left| \sec x \right| + \left( a - 2 \right) x\]

\[\text { When }\sec x > 0 \Rightarrow \left| \sec x \right| = \sec x\]

\[\frac{d}{dx}\left\{ f\left( x \right) \right\} = 2 \sec^2 x + \left( 2a + 1 \right)\frac{1}{\sec x} \times \sec x \tan x + \left( a - 2 \right) \]

\[ = 2 \sec^2 x + \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \]

\[\text { For  f(x) to be increasing}, \]

\[2se c^2 x + \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \geqslant 0\]

\[ \Rightarrow 2 + 2 \tan^2 x + \left( 2a + 1 \right)\tan x + a - 2 \geqslant 0\]

\[ \Rightarrow 2 \tan^2 x + \left( 2a + 1 \right)\tan x + a \geqslant 0\]

\[\text  { Its discriminant } \leqslant 0 \left[ \because a x^2 + bx + c \geqslant 0 \Rightarrow b^2 - 4ac \leqslant 0 \right]\]

\[ \Rightarrow \left( 2a + 1 \right)^2 - 4 . 2 . a \leqslant 0\]

\[ \Rightarrow 4 a^2 - 4a + 1 \leqslant 0\]

\[ \Rightarrow \left( 2a - 1 \right)^2 \leqslant 0\]

\[ \left( 2a - 1 \right)^2 < 0 \text { cannot be possible } . \]

\[ \therefore \left( 2a - 1 \right)^2 = 0\]

\[ \Rightarrow a = \frac{1}{2}\]

\[\text { When } \sec x < 0 \Rightarrow \left| \sec x \right| = - \sec x\]

\[\frac{d}{dx}\left\{ f\left( x \right) \right\} = 2 \sec^2 x + \left( 2a + 1 \right)\frac{1}{- \sec x} \times \sec x \tan x + \left( a - 2 \right)\]

\[ = 2 \sec^2 x - \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \]

\[\text { For f(x) to be increasing,} \]

\[2se c^2 x - \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \geqslant 0\]

\[ \Rightarrow 2 + 2 \tan^2 x - \left( 2a + 1 \right)\tan x + a - 2 \geqslant 0\]

\[ \Rightarrow 2 \tan^2 x - \left( 2a + 1 \right)\tan x + a \geqslant 0 \]

\[\text { Its discriminant } \leqslant 0 \left[ \because a x^2 + bx + c \geqslant 0 \Rightarrow b^2 - 4ac \leqslant 0 \right]\]

\[ \Rightarrow \left\{ - \left( 2a + 1 \right) \right\}^2 - 4 . 2 . a \leqslant 0\]

\[ \Rightarrow 4 a^2 - 4a + 1 \leqslant 0\]

\[ \Rightarrow \left( 2a - 1 \right)^2 \leqslant 0\]

\[ \left( 2a - 1 \right)^2 < 0 \text { cannot be possible } . \]

\[ \therefore \left( 2a - 1 \right)^2 = 0\]

\[ \Rightarrow a = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.4 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 8 | Page 40

RELATED QUESTIONS

Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Function f(x) = loga x is increasing on R, if


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Show that f(x) = x – cos x is increasing for all x.


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


The function f(x) = 9 - x5 - x7 is decreasing for


The function f(x) = sin x + 2x is ______ 


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×