English

If the Function F(X) = X2 − Kx + 5 is Increasing on [2, 4], Then - Mathematics

Advertisements
Advertisements

Question

If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then

Options

  •  k ∈ (2, ∞)

  • k ∈ (−∞, 2)

  • k ∈ (4, ∞)

  •  k ∈ (−∞, 4).

MCQ

Solution

k ∈ (−∞, 4)

\[f\left( x \right) = x^2 - kx + 5\]

\[f'\left( x \right) = 2x - k\]

\[\text { Given: f(x) is increasing on } [2, 4] . \]

\[ \Rightarrow f'\left( x \right) > 0\]

\[ \Rightarrow 2x - k > 0\]

\[ \Rightarrow k < 2x\]

\[\because x \in \left[ 2, 4 \right], \text { maximum value of k is} 4,k< 4.\]

\[ \therefore k \in \left( - \infty , 4 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.4 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 27 | Page 41

RELATED QUESTIONS

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


y = log x satisfies for x > 1, the inequality ______.


A function f is said to be increasing at a point c if ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×