0 for All X ∈ [0, A]. Then, ϕ (X) - Mathematics | Shaalaa.com" /> 0 for All X ∈ [0, A]. Then, ϕ (X) " /> 0 for All X ∈ [0, A]. Then, ϕ (X), Increasing and Decreasing Functions" />
English

Let ϕ(X) = F(X) + F(2a − X) And F"(X) > 0 for All X ∈ [0, A]. Then, ϕ (X) - Mathematics

Advertisements
Advertisements

Question

Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)

Options

  • increases on [0, a]

  • decreases on [0, a]

  • increases on [−a, 0]

  • decreases on [a, 2a]

MCQ

Solution

Given: ϕ(x) = f(x) + f(2a − x)

Differentiating above equation with respect to x we get,

ϕ'(x) = f'(x) − f(2a − x)        .....(1)

Since, f''(x) > 0, f'(x) is an increasing function.

Now,

when \[x \in \left[ 0, a \right]\]

\[x \leq 2a - x\]
\[f'\left( x \right) \leq f\left( 2a - x \right) . . . . . \left( 2 \right)\]

Considering equation (1) and (2) we get,
ϕ'(x) ≤ 0
⇒ ϕ'(x) is decreasing in [0, a]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.4 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 26 | Page 41

RELATED QUESTIONS

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


The interval in which y = x2 e–x is increasing is ______.


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = x3 − 27x + 5 is monotonically increasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


The function `1/(1 + x^2)` is increasing in the interval ______ 


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×