Advertisements
Advertisements
Question
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Options
λ > 1/2
λ < 1/2
λ < 2
λ > 2
Solution
\[f\left( x \right) = \cos x - 2 \lambda x\]
\[f'\left( x \right) = - \sin x - 2 \lambda \]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - \sin x - 2 \lambda < 0\]
\[ \Rightarrow sin x + 2 \lambda > 0 \]
\[ \Rightarrow 2 \lambda > - \sin x\]
\[\text { We know that the maximum value of -sin x is 1 }.\]
\[ \Rightarrow 2 \lambda > 1\]
\[ \Rightarrow \lambda > \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
The function f(x) = xx decreases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
The function f(x) = 9 - x5 - x7 is decreasing for
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
A function f is said to be increasing at a point c if ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.