Advertisements
Advertisements
Question
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Solution
f(x)=[x(x−2)]2
f'(x)=2[x(x−2)]{x−2+x}
f'(x)=4x(x−2)(x−1)
At critical point, f'(x)=0
4x(x−2)(x−1)=0
⇒x=0,1,2
Interval | f'(x)=4x(x−1)(x−2) |
Result |
(−∞,0) | f'(−1)=4(−1)(−2)(−3)=−24<0 | Decreasing |
(0,1) | f'(1/2)=4(1/2)(−1/2)(−3/2)=3/2>0 | Increasing |
(1,2) | f'(3/2)=4(3/2)(1/2)(−1/2)=−3/2<0 | Decreasing |
(2,∞) | f'(3)=4(3)(2)(1)=24>0 | Increasing |
So, the function is increasing in the interval (0,1)∪(2,∞).
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f(x) = tan-1 x is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.