Advertisements
Advertisements
Question
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Options
True
False
Solution
True
APPEARS IN
RELATED QUESTIONS
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
The interval in which y = x2 e–x is increasing is ______.
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Every invertible function is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The function f(x) = x9 + 3x7 + 64 is increasing on
Find `dy/dx,if e^x+e^y=e^(x-y)`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Function given by f(x) = sin x is strictly increasing in.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.