English

Without Using the Derivative, Show that the Function F (X) = | X | Is. (A) Strictly Increasing in (0, ∞) (B) Strictly Decreasing in (−∞, 0). - Mathematics

Advertisements
Advertisements

Question

Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .

Sum

Solution

\[\text { Here }, \]

\[f\left( x \right) = \left| x \right|\]

\[(a) \text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \left| x_1 \right| < \left| x_2 \right|\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So },f\left( x \right) \text { is increasing on }\left( 0, \infty \right).\]

\[(b) \text { Let } x_1 , x_2 \in ( - \infty , 0]. \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \left| x_1 \right| > \left| x_2 \right|\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in ( - \infty , 0].\]

\[\text { So },f\left( x \right) \text { is decreasing on }( - \infty , 0].\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 8 | Page 10

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = xx decreases on the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


The function f(x) = x2 e−x is monotonic increasing when


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


The function f(x) = tan-1 x is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


y = log x satisfies for x > 1, the inequality ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×