Advertisements
Advertisements
Question
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Solution
\[f\left( x \right) = x^3 - 3 x^2 + 4x\]
\[f'\left( x \right) = 3 x^2 - 6x + 4\]
\[ = 3\left( x^2 - 2x \right) + 4\]
\[ = 3\left( x^2 - 2x + 1 \right) - 3 + 4\]
\[ = 3 \left( x - 1 \right)^2 + 1 > 0, \forall x \in R\]
\[\text { Hence , f(x) is strictly increasing on R } .\]
APPEARS IN
RELATED QUESTIONS
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
The interval in which y = x2 e–x is increasing is ______.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = loga x is increasing on R, if
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
y = log x satisfies for x > 1, the inequality ______.