English

Show that f(x) = e2x is increasing on R. - Mathematics

Advertisements
Advertisements

Questions

Show that f(x) = e2x is increasing on R.

Show that the function given by f (x) = e 2x is increasing on R.

Sum

Solution 1

\[f\left( x \right) = e^{2x} \]

\[f'\left( x \right) = 2 e^{2x} \]

\[\text { Now,} \]

\[x \in R\]

 Since the value of   `e^{2x}` text  is always positive for any real value of x, ` e^{2x}` > 0 . 

\[ \Rightarrow 2 e^{2x} > 0\]

\[ \Rightarrow f'\left( x \right) > 0\]

\[\text { So,f(x)is increasing on R} .\]

shaalaa.com

Solution 2

We have f(x) = e2x

f'(x) = 2e2x > 0, x `in` R

f is strictly increasing on R

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 4 | Page 34

RELATED QUESTIONS

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


The function f(x) = cot−1 x + x increases in the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Let f(x) = x3 − 6x2 + 15x + 3. Then,


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find `dy/dx,if e^x+e^y=e^(x-y)`


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The slope of tangent at any point (a, b) is also called as ______.


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The function f(x) = x3 - 3x is ______.


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


For every value of x, the function f(x) = `1/7^x` is ______ 


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×