Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^8 + 6 x^2 \]
\[f'\left( x \right) = 8 x^7 + 12x\]
\[ = 4x \left( 2 x^6 + 3 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 4x \left( 2 x^6 + 3 \right) > 0 \left[ \text { Since } \left( 2 x^6 + 3 \right) > 0, 4x \left( 2 x^6 + 3 \right) > 0 \Rightarrow x > 0 \right]\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow x \in \left( 0, \infty \right)\]
\[\text { So ,f(x)is increasing on x }\in \left( 0, \infty \right) . \]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 4x \left( 2 x^6 + 3 \right) < 0\]
\[ \Rightarrow x < 0 \left[ \text { Since } \left( 2 x^6 + 3 \right) > 0, 4x \left( 2 x^6 + 3 \right) < 0 \Rightarrow x < 0 \right]\]
\[ \Rightarrow x \in \left( - \infty , 0 \right)\]
\[\text { So,f(x)is decreasing on x }\in \left( - \infty , 0 \right) .\]
APPEARS IN
RELATED QUESTIONS
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = ax is increasing on R, if
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Let f(x) = x3 − 6x2 + 9ЁЭСе + 18, then f(x) is strictly decreasing in ______
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The function f(x) = 9 - x5 - x7 is decreasing for
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
A function f is said to be increasing at a point c if ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.