English

Find the Interval in Which the Following Function Are Increasing Or Decreasing F(X) = X3 − 6x2 + 9x + 15 ? - Mathematics

Advertisements
Advertisements

Question

Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?

Sum

Solution

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = x^3 - 6 x^2 + 9x + 15\]

\[f'\left( x \right) = 3 x^2 - 12x + 9\]

\[ = 3 \left( x^2 - 4x + 3 \right)\]

\[ = 3 \left( x - 1 \right)\left( x - 3 \right)\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 3 \left( x - 1 \right)\left( x - 3 \right) > 0 \]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 3 > 0, 3 \left( x - 1 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \right]\]

\[ \Rightarrow x < 1 \ or \ x > 3\]

\[ \Rightarrow x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right)\]

\[\text { So,f(x)is increasing on } x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right).\]

\[\text { For f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 3 \left( x - 1 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \left[ \text { Since } 3 > 0, 3 \left( x - 1 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \right]\]

\[ \Rightarrow 1 < x < 3 \]

\[ \Rightarrow x \in \left( 1, 3 \right)\]

\[\text { So,f(x)is decreasing on x } \in \left( 1, 3 \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.24 | Page 33

RELATED QUESTIONS

Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Function f(x) = x3 − 27x + 5 is monotonically increasing when


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Function f(x) = ax is increasing on R, if


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


The function f(x) = x9 + 3x7 + 64 is increasing on


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = sin x + 2x is ______ 


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


The function f (x) = 2 – 3 x is ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×