English

State When a Function F(X) is Said to Be Increasing on an Interval [A, B]. Test Whether the Function F(X) = X2 − 6x + 3 is Increasing on the Interval [4, 6] ? - Mathematics

Advertisements
Advertisements

Question

State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?

Sum

Solution

\[\text { A function f(x) is said to be increasing on } \left[ a, b \right] \text { if it is increasing at  x = a and x = b } . \]

\[\text { Here, } \]

\[f\left( x \right) = x^2 - 6x + 3\]

\[f'\left( x \right) = 2x - 6\]

\[ \Rightarrow f'\left( x \right) = 2\left( x - 3 \right)\]

\[\text { Now, } f'\left( 4 \right) = 2\left( 4 - 3 \right)\]

\[ = 2\]

\[ \therefore f'\left( 4 \right) > 0 \]

\[\text { So, f(x) is increasing on x}  = 4 \]

\[\text { &, }f'\left( 6 \right) = 2\left( 6 - 3 \right)\]

\[ = 6\]

\[ \therefore f'\left( 6 \right) > 0 \]

\[\text { So, f (x) is increasing on x } = 6 \]

\[\text { Hence,}f\left( x \right)\text { is increasing on } [4, 6].\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 22 | Page 35

RELATED QUESTIONS

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = x9 + 3x7 + 64 is increasing on


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f(x) = tan-1 x is ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×