Advertisements
Advertisements
Question
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Solution
Given,P(x) = 0.005x3 + 0.02x2 + 30x.
Differentiating both sides with respect to x, we have
marginal increase in pollution content = `(dP(x)/(dx))=0.015x^2+0.04x+30......(1)`
Putting x = 3 in (1), we have `((dP(x))/dx)_(x=3)=0.015xx9+0.04xx3+30=30.255`
Therefore, the value of marginal increase in pollution content is 30.255
APPEARS IN
RELATED QUESTIONS
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Let f(x) = x3 − 6x2 + 15x + 3. Then,
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.