Advertisements
Advertisements
Question
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Options
x < 2
x > 2
x > 3
1 < x < 2
Solution
1 < x < 2
\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 29\]
\[f'\left( x \right) = 6 x^2 - 18x + 12\]
\[ = 6 \left( x^2 - 3x + 2 \right)\]
\[ = 6\left( x - 1 \right)\left( x - 2 \right)\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6\left( x - 1 \right)\left( x - 2 \right) < 0 \]
\[ \Rightarrow \left( x - 1 \right)\left( x - 2 \right) < 0 \left[ \text { Since }6 > 0, 6\left( x - 1 \right)\left( x - 2 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow 1 < x < 2\]
\[\text { So,f(x) is decreasing for }1 < x < 2 .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Find `dy/dx,if e^x+e^y=e^(x-y)`
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
y = log x satisfies for x > 1, the inequality ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.