Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = - 2 x^3 - 9 x^2 - 12x + 1\]
\[f'\left( x \right) = - 6 x^2 - 18x - 12\]
\[ = - 6 \left( x^2 + 3x + 2 \right)\]
\[ = - 6 \left( x + 1 \right)\left( x + 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow - 6 \left( x + 1 \right)\left( x + 2 \right) > 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x + 2 \right) < 0 \left[ \text { Since }- 6 < 0, - 6 \left( x + 1 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x + 1 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < - 1 \]
\[ \Rightarrow x \in \left( - 2, - 1 \right)\]
\[\text { So },f(x)\text { is increasing on } \left( - 2, - 1 \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - 6 \left( x + 1 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x + 2 \right) > 0 \left[ \text { Since } - 6 < 0, - 6 \left( x + 1 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x + 1 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > - 1 \]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( - 1, \infty \right)\]
\[\text { So,}f(x)\text { is decreasing on } \left( - \infty , - 2 \right) \cup \left( - 1, \infty \right) .\]
APPEARS IN
RELATED QUESTIONS
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Every invertible function is
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The slope of tangent at any point (a, b) is also called as ______.
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Function given by f(x) = sin x is strictly increasing in.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
If f(x) = x + cosx – a then ______.
A function f is said to be increasing at a point c if ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?