Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[ f\left( x \right) = 2 x^3 - 15 x^2 + 36x + 1\]
\[f'\left( x \right) = 6 x^2 - 30x + 36\]
\[ = 6 \left( x^2 - 5x + 6 \right)\]
\[ = 6 \left( x - 2 \right)\left( x - 3 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x - 2 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 6 > 0, 6\left( x - 2 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 2 \right)\left( x - 3 \right) > 0 \right]\]
\[ \Rightarrow x < 2 \ or \ x > 3\]
\[ \Rightarrow x \in \left( - \infty , 2 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , 2 \right) \cup \left( 3, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x - 2 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x - 3 \right) < 0 \left[ \text { Since } 6 > 0, 6\left( x - 2 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 2 \right)\left( x - 3 \right) < 0 \right]\]
\[ \Rightarrow 2 < x < 3 \]
\[ \Rightarrow x \in \left( 2, 3 \right)\]
\[\text { So },f(x)\text { is decreasing on } x \in \left( 2, 3 \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f(x) = tanx – x ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.