Advertisements
Advertisements
Question
The function f(x) = tanx – x ______.
Options
Always increases
Always decreases
Never increases
Sometimes increases and sometimes decreases
Solution
The function f(x) = tanx – x always increases.
Explanation:
Here, f(x) = tan x – x
So, f'(x) = sec2x – 1
f'(x) > 0 ∀ x ∈ R
So f(x) is always increasing.
APPEARS IN
RELATED QUESTIONS
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The function f(x) = cot−1 x + x increases in the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Function f(x) = loga x is increasing on R, if
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.