Advertisements
Advertisements
Question
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Solution
The given function is p = `183 + 120 D – 3D^2`
∴ `(dp)/(dD)=120-6D`
Now `(dp)/(dD)`=`0⇒120-6D=0⇒D=20`
For increasing the price
`(dp)/(dD)>0`
`120-6D>0`
`-6D>-120`
`D<120/6`
`D<20`
Demand and price cannot be negative
∴ Price is increasing in the internal (0, 20).
APPEARS IN
RELATED QUESTIONS
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = | x | − | x − 1 | is monotonically increasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The function f(x) = x9 + 3x7 + 64 is increasing on
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.