Advertisements
Advertisements
Question
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Solution
\[f\left( x \right) = \sin x - \cos x, x \in \left( 0, 2\pi \right)\]
\[f'\left( x \right) = \cos x + \sin x\]
\[\text { For f(x) to be increasin, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \cos x + \sin x > 0\]
\[ \Rightarrow \sin x > - \cos x\]
\[ \Rightarrow \tan x > - 1\]
\[ \Rightarrow x \in \left( 0, \frac{3\pi}{4} \right) \cup \left( \frac{7\pi}{4}, 2\pi \right)\]
\[\text { So,f(x)is increasing on } \left( 0, \frac{3\pi}{4} \right) \cup \left( \frac{7\pi}{4}, 2\pi \right) . \]
\[\text { For f(x) to be decreasing we must have},\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \cos x + \sin x < 0\]
\[ \Rightarrow \sin x < - \cos x\]
\[ \Rightarrow \tan x < - 1\]
\[ \Rightarrow x \in \left( \frac{3\pi}{4}, \frac{7\pi}{4} \right)\]
\[\text { So,f(x)is decreasing on }\left( \frac{3\pi}{4}, \frac{7\pi}{4} \right).\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The function f(x) = sin x + 2x is ______
y = x(x – 3)2 decreases for the values of x given by : ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.