English

Prove that function f(x) = x-1x, x ∈ R and x ≠ 0 is increasing function - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function

Sum

Solution

f(x) = `x - 1/x`, x ∈ R, x ≠ 0

∴ f'(x) = `1 + 1/x^2`

x2 is always positive for x ≠ 0

∴ f′(x) > 0 for all x ∈ R, x ≠ 0

Hence, f(x) is an increasing function for all x ∈ R, x ≠ 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.2: Applications of Derivatives - Very Short Answers

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 2.2 Applications of Derivatives
Very Short Answers | Q 3

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = cot−1 x + x increases in the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Which of the following graph represent the strictly increasing function.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


y = log x satisfies for x > 1, the inequality ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×