Advertisements
Advertisements
Question
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Solution
f(x) = 2x3 - 3x2 - 36x + 7
f'(x) = 6x2 - 6x - 36
= 6(x2 - x - 6)
= 6(x - 3) (x + 2)
if, f'(x) = 0
6(x - 3) (x + 2) = 0
x = -2, 3 divides the real line into three intervals `(- infty, - 2), (-2, 3)` and `(3, infty)`.
(a) The function f is continuously increasing in the intervals `(- infty, - 2)` and `(3, infty)`.
(b) The function f is continuously decreasing in the interval (-2, 3).
APPEARS IN
RELATED QUESTIONS
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Find `dy/dx,if e^x+e^y=e^(x-y)`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Show that f(x) = x – cos x is increasing for all x.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = tan-1 x is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
If f(x) = x + cosx – a then ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.