Advertisements
Advertisements
Question
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Solution
f(x) = 2x2 - 3x
f'(x) = 4x - 3
If f'(x) = 0
4x - 3 = 0
x = `3/4`
(a) f'(x) = 4x - 3 > 0, x `in (3/4, infty)`
Therefore, the function is continuously increasing in `(3/4, infty)`.
(b) f'(x) = cos x < 0, x `in (- infty, 3/4)`
Therefore, the function is continuously decreasing in `(- infty, 3/4)`.
APPEARS IN
RELATED QUESTIONS
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Every invertible function is
The function f(x) = x9 + 3x7 + 64 is increasing on
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
y = x(x – 3)2 decreases for the values of x given by : ______.
The function f(x) = tanx – x ______.
The function f(x) = tan-1 x is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.