Advertisements
Advertisements
प्रश्न
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
उत्तर
f(x) = 2x2 - 3x
f'(x) = 4x - 3
If f'(x) = 0
4x - 3 = 0
x = `3/4`
(a) f'(x) = 4x - 3 > 0, x `in (3/4, infty)`
Therefore, the function is continuously increasing in `(3/4, infty)`.
(b) f'(x) = cos x < 0, x `in (- infty, 3/4)`
Therefore, the function is continuously decreasing in `(- infty, 3/4)`.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the logarithmic function is strictly increasing on (0, ∞).
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
The interval in which y = x2 e–x is increasing is ______.
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = loga x is increasing on R, if
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
y = x(x – 3)2 decreases for the values of x given by : ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
A function f is said to be increasing at a point c if ______.
The function f(x) = x3 + 3x is increasing in interval ______.