हिंदी

The interval in which y = x2 e–x is increasing is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The interval in which y = x2 e–x is increasing is ______.

विकल्प

  • (– ∞, ∞)

  • (– 2, 0)

  • (2, ∞)

  •  (0, 2)

MCQ
रिक्त स्थान भरें

उत्तर

The interval in which y = x2 e–x is increasing is (0, 2).

Explanation:

x2 - e-x

`dy/dx = 2xe^-x - x^2  e^-x`

= xe-x (2 - x)

If f'(x) = 0

xe-x (2 - x) = 0

x = 0, 2

x = 0 and x = 2 divide the real line into intervals `(- infty, 0), (0, 2)` and `(2, infty)`.

Thus, `(- infty, -1)` and `(1, infty)` represent the intervals.

The function y is continuously increasing in the interval (0, 2).

Interval (- ∞, 0) (0, 2) (2, ∞ )
Sign of x -ve +ve +ve
sign of (2 - x) +ve +ve -ve
sign of e-x +ve +ve +ve
sign of f' (x) -ve +ve -ve
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.2 | Q 19 | पृष्ठ २०६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


The function f(x) = x3 - 3x is ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×