हिंदी

Show that the Function F Given by F(X) = 10x is Increasing for All X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function f given by f(x) = 10x is increasing for all x ?

योग

उत्तर

\[f\left( x \right) = {10}^x \]

\[f'\left( x \right) = {10}^x \log 10 > 0, \forall x \in R\]

\[\text { So, f(x) is increasing for all x } \in R .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 28 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = tanx – x ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


y = log x satisfies for x > 1, the inequality ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×