Advertisements
Advertisements
प्रश्न
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
उत्तर
\[f\left( x \right) = \log \cos x\]
\[f'\left( x \right) = \frac{1}{\cos x}\left( - \sin x \right)\]
\[ = - \tan x\]
\[\text { Now,} \]
\[x \in \left( - \frac{\pi}{2}, 0 \right)\]
\[ \Rightarrow \tan x < 0\]
\[ \Rightarrow - \tan x > 0 \]
\[ \Rightarrow f'(x) > 0\]
\[\text { So, f(x) is strictly increasing on } \left( - \frac{\pi}{2}, 0 \right) . \]
\[\text { Now,} \]
\[x \in \left( 0, \frac{\pi}{2} \right)\]
\[ \Rightarrow \tan x > 0\]
\[ \Rightarrow - \tan x < 0 \]
\[ \Rightarrow f'(x) < 0\]
\[\text { So, f(x)is strictly decreasing on }\left( 0, \frac{\pi}{2} \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Show that f(x) = x – cos x is increasing for all x.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = 9 - x5 - x7 is decreasing for
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
A function f is said to be increasing at a point c if ______.