हिंदी

Find the Intervals in Which the Function `F(X) = X^4/4 - X^3 - 5x^2 + 24x + 12`Is (A) Strictly Increasing, (B) Strictly Decreasing - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing

उत्तर

We have

`f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`

`=> f'(x) = x^3 -3x^2 - 10x + 24`

As x = 2 satisfies the above equation. Therefore, (x − 2) is a factor.

On performing long division

`(x^3 - 3x^2- 10x + 24)/(x -2) = x^2 -x -12 = (x + 3)(x+4)` 

`=> f'(x) = (x - 2) (x + 3) (x -4)`

Here, the critical points are 2, −3, and 4.
The possible intervals are (−∞, −3), (−3, 2), (2, 4), (4, ∞)

a) For f(x) to be strictly increasing, we must have

f'(x) > 0

`=> (x - 2)(x + 3) (x - 4) > 0`

`=> x in (-3,2) U (4,oo)`

So, f(x) is strictly increasing on x∈(−3, 2) ∪ (4, ∞).

b) For f(x) to be strictly decreasing, we must have 

f'(x) < 0

`=> (x - 2)(x+3)(x - 4) < 0`

`=> x in (-oo, -3) U (2,4)``

So, f(x) is strictly decreasing on x∈(−∞, −3) ∪ (2, 4).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Prove that the logarithmic function is strictly increasing on (0, ∞).


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Show that the function f given by f(x) = 10x is increasing for all x ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function f(x) = xx decreases on the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


The function f(x) = 9 - x5 - x7 is decreasing for


The function f(x) = sin x + 2x is ______ 


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f (x) = 2 – 3 x is ____________.


y = log x satisfies for x > 1, the inequality ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×