हिंदी

Show that the Function `F(X) = Xcuberoot3 - 3xsqrt2 + 6x - 100` is Increasing on R - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R

उत्तर १

`f(x) = x^3 - 3x^2 + 6x - 100`

`f'(x) = 3x^2 - 6x + 6`

`= 3(x^2 -  2x + 1 ) + 3`

=`3(x+1)^2 + 3 > 0`

For all values of x, `(x - 1)^2` is always positve

`:. f'(x) > 0`

So, f (x) is increasing function.

shaalaa.com

उत्तर २

The given function is

f(x) = x3 − 3x2 + 6x −100

∴f'(x) = 3x2 − 6x + 6

=3(x2 − 2x +2)

=3(x2 − 2x + 1) + 3

=3(x−1)2+3

For f(x) to be increasing, we must have f'(x0

Now, 3(x−1)2 ≥ 0  ∀x ∈ R

⇒ 3(x − 1)2 + 3 > 0  ∀x ∈ R

⇒ f'(x) > 0    ∀x ∈ R

Hence, the given function is increasing on R

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) All India Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


y = log x satisfies for x > 1, the inequality ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×