Advertisements
Advertisements
प्रश्न
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
उत्तर
\[\text { Here }, \]
\[f\left( x \right) = \log \sin x\]
\[\text { Domain of log sin x is}\left( 0, \pi \right).\]
\[f'\left( x \right) = \frac{1}{\sin x}\cos x\]
\[ = \cot x\]
\[\text { For x} \in \left( 0, \frac{\pi}{2} \right), \text { cot x} > 0 \left[ \because \text { Cot function is positive in first quadrant }\right]\]
\[ \Rightarrow f'\left( x \right) > 0 \]
\[\text { So,f(x)is increasing on} \left( 0, \frac{\pi}{2} \right) . \]
\[\text { For x }\in \left( \frac{\pi}{2}, \pi \right), \text { cot x }< 0 \left[ \because \text { Cot function is negative in second quadrant } \right]\]
\[ \Rightarrow f'\left( x \right) < 0 \]
\[\text { So,f(x)is decreasing on }\left( \frac{\pi}{2}, \pi \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The slope of tangent at any point (a, b) is also called as ______.
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = x3 - 3x is ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)