हिंदी

Show That F(X) = Log Sin X Is Increasing on (0, π/2) and Decreasing on (π/2, π) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?

योग

उत्तर

\[\text { Here }, \]

\[f\left( x \right) = \log \sin x\]

\[\text { Domain of log sin x is}\left( 0, \pi \right).\]

\[f'\left( x \right) = \frac{1}{\sin x}\cos x\]

\[ = \cot x\]

\[\text { For x} \in \left( 0, \frac{\pi}{2} \right), \text { cot x} > 0 \left[ \because \text { Cot function is positive in first quadrant }\right]\]

\[ \Rightarrow f'\left( x \right) > 0 \]

\[\text { So,f(x)is increasing on} \left( 0, \frac{\pi}{2} \right) . \]

\[\text { For x }\in \left( \frac{\pi}{2}, \pi \right), \text { cot x }< 0 \left[ \because \text { Cot function is negative in second quadrant } \right]\]

\[ \Rightarrow f'\left( x \right) < 0 \]

\[\text { So,f(x)is decreasing on }\left( \frac{\pi}{2}, \pi \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 8 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The slope of tangent at any point (a, b) is also called as ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = x3 - 3x is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


If f(x) = x3 – 15x2 + 84x – 17, then ______.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×