Advertisements
Advertisements
प्रश्न
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
उत्तर
y = xx
∴ log y = log xx = x log x
Differentiating both sides w.r.t. x, we get
`(1)/y.dy/dx = d/dx(x log x)`
= `x.d/dx(log x) + (log x).d/dx(x)`
= `x xx (1)/x + (log x) xx 1`
∴ `dy/dx = y(1 + logx)`
= xx(1 + log x)
y is increasing if `dy/dx ≥ 0`
i.e. if xx (1 + log x) ≥ 0
i.e. if 1 + log x ≥ 0 ...[∵ x > 0]
i.e. if log x ≥ – 1
i.e. if log x ≥ – log e ...[∵ log e = 1]
i.e. if log x ≥ log `(1)/e`
i.e. if x ≥ `(1)/e`
∴ y is increasing in `[1/e, oo)`
y is decreasing if `dy/dx ≤ 0`
i.e. if xx (1 + log x) ≤ 0
i.e. if 1 + log x ≤ 0 ...[∵ x > 0]
i.e. if log x ≤ – 1
i.e. if log x ≤ – log e ...[∵ log e = 1]
i.e. if log x ≤ log `(1)/e`
i.e. if x ≤ `(1)/e`, where x > 0
∴ y is decreasing is `(0, 1/e]`
Hence, the given function is increasing `[1/e, oo)`
and decreasing in `(0, 1/e]`.
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Show that f(x) = x – cos x is increasing for all x.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Show that f(x) = x – cos x is increasing for all x.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The function `1/(1 + x^2)` is increasing in the interval ______
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f (x) = 2 – 3 x is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
y = log x satisfies for x > 1, the inequality ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
A function f is said to be increasing at a point c if ______.
The function f(x) = x3 + 3x is increasing in interval ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.