Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 5 + 36x + 3 x^2 - 2 x^3 \]
\[f'\left( x \right) = 36 + 6x - 6 x^2 \]
\[ = - 6 \left( x^2 - x - 6 \right)\]
\[ = - 6 \left( x - 3 \right)\left( x + 2 \right)\]
\[\text{ For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow - 6 \left( x - 3 \right)\left( x + 2 \right) > 0 \]
\[ \Rightarrow \left( x - 3 \right)\left( x + 2 \right) < 0 \left[ \text {Since} - 6 < 0, - 6 \left( x - 1 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 3 \]
\[ \Rightarrow x \in \left( - 2, 3 \right)\]
\[\text { So },f(x)\text { is increasing on } \left( - 2, 3 \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have}\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - 6 \left( x - 3 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 3 \right)\left( x + 2 \right) > 0 \left[ \text { Since } - 6 < 0, - 6 \left( x - 1 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 3 \]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 3, \infty \right)\]
\[\text { So,}f(x)\text { is decreasing on } \left( - \infty , - 2 \right) \cup \left( 3, \infty \right) .\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = loga x is increasing on R, if
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Which of the following functions is decreasing on `(0, pi/2)`?
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?