हिंदी

Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 10 X 4 − 4 5 X 3 − 3 X 2 + 36 5 X + 11 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?

योग

उत्तर

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\]

\[ = \frac{3 x^4 - 8 x^3 - 30 x^2 + 72x + 110}{10}\]

\[f'\left( x \right) = \frac{12 x^3 - 24 x^2 - 60x + 72}{10}\]

\[ = \frac{12}{10}\left( x^3 - 2 x^2 - 5x + 6 \right)\]

\[ = \frac{\left( x - 1 \right)\left( x^2 - x - 6 \right)}{10}\]

\[ = \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right)\]

\[\text { Here }, 1, 2 \text { and } 3 \text { are the critical points } . \]

\[\text { The possible intervals are }\left( - \infty - 2 \right),\left( - 2, 1 \right),\left( 1, 3 \right)\text { and }\left( 3, \infty \right).\]

\[\text { For }f(x)\text {  to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]

\[ \Rightarrow x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right)\]

\[\text { So },f(x)\text { is increasing on } x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right) . \]

\[\text { For }f(x)\text {  to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) \]

\[\text { So,}f(x)\text { is decreasing on } x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.18 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = cot−1 x + x increases in the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


y = x(x – 3)2 decreases for the values of x given by : ______.


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = tanx – x ______.


The function f(x) = tan-1 x is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×