Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\]
\[ = \frac{3 x^4 - 8 x^3 - 30 x^2 + 72x + 110}{10}\]
\[f'\left( x \right) = \frac{12 x^3 - 24 x^2 - 60x + 72}{10}\]
\[ = \frac{12}{10}\left( x^3 - 2 x^2 - 5x + 6 \right)\]
\[ = \frac{\left( x - 1 \right)\left( x^2 - x - 6 \right)}{10}\]
\[ = \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right)\]
\[\text { Here }, 1, 2 \text { and } 3 \text { are the critical points } . \]
\[\text { The possible intervals are }\left( - \infty - 2 \right),\left( - 2, 1 \right),\left( 1, 3 \right)\text { and }\left( 3, \infty \right).\]
\[\text { For }f(x)\text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right) . \]
\[\text { For }f(x)\text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) \]
\[\text { So,}f(x)\text { is decreasing on } x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) .\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = cot−1 x + x increases in the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
y = x(x – 3)2 decreases for the values of x given by : ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = tanx – x ______.
The function f(x) = tan-1 x is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
The function f(x) = x3 + 3x is increasing in interval ______.