Advertisements
Advertisements
प्रश्न
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
उत्तर
D = 50 - 3p - p2
`therefore "dD"/"dp" = - 3 - 2p`
Elasticity of demand η
`= -"P"/"D" . "dD"/"dp"`
`= -"p"/(50 - 3"p" - "p"^2) xx (- 3 - 2"p")`
`= ((3 + 2"p")"p")/(50 - 3"p" - "p"^2)`
(a) When p = 5 , η = `65/10` = 6.5 > 1
∴ η is elastic.
(b) When p = 2 , η = `14/40 = 7/20 < 1`
∴ η is inelastic .
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
The function f(x) = x2 e−x is monotonic increasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f (x) = 2 – 3 x is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.