Advertisements
Advertisements
Question
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Solution
D = 50 - 3p - p2
`therefore "dD"/"dp" = - 3 - 2p`
Elasticity of demand η
`= -"P"/"D" . "dD"/"dp"`
`= -"p"/(50 - 3"p" - "p"^2) xx (- 3 - 2"p")`
`= ((3 + 2"p")"p")/(50 - 3"p" - "p"^2)`
(a) When p = 5 , η = `65/10` = 6.5 > 1
∴ η is elastic.
(b) When p = 2 , η = `14/40 = 7/20 < 1`
∴ η is inelastic .
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = loga x is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36ЁЭСе + 6 is monotonically decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Which of the following graph represent the strictly increasing function.
Function given by f(x) = sin x is strictly increasing in.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
A function f is said to be increasing at a point c if ______.