English

By Constructing the Truth Table, Deterdline Whether the Following Statement Pattern Ls a Tautology, - Mathematics and Statistics

Advertisements
Advertisements

Question

By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).

Sum

Solution

1 2 3 4 5 6
p q ~q p → q p ∧ ~q (p → q ) ∧ (p ∧ ~q)
T T F T F F
T F T F T F
F T F T F F
F F T T F F

The truth table contains only F in the last column. Hence the given statement is a contradiction. 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

RELATED QUESTIONS

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


Using the rules of negation, write the negation of the following:

(~p ∧ q) ∧ (~q ∨ ~r)


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


If p → (∼p v q) is false, then the truth values of p and q are respectively


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×