Advertisements
Advertisements
Question
Using the rules of negation, write the negation of the following:
(~p ∧ q) ∧ (~q ∨ ~r)
Solution
~[(~p ∧ q) ∧ (~q ∨ ~r)]
≡ ~(~p ∧ q) ∨ ~(~q ∨ ~r) ...[Negation of conjunction]
≡ [~(~p) ∨ ~q] ∨ [~(~q) ∧ ~(~r)] ...[Negation of conjunction and disjunction]
≡ (p ∨ ~q) ∨ (q ∧ r) ...[Negation on negation]
APPEARS IN
RELATED QUESTIONS
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
(p ∧ q) → r is logically equivalent to ________.
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the negation of the following statement.
Some continuous functions are differentiable.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
The contrapositive of p → ~ q is ______
Which of the following is not equivalent to p → q.
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.